An Overview of Lactase Enzyme: Microbial Sources, Substrate Range, Fermentation Approaches, Extraction Techniques, and Industrial Applications
Keywords:
Fermentation, Industrial Application, Lactase, MicroorganismAbstract
The enzyme β-galactosidase has an important role in the food and pharmaceutical industries. This article discusses the role of lactase enzymes in various contexts, the sources of microorganisms that can produce lactase, the types of substrates used in lactase fermentation, effective fermentation strategies, and industrial applications of lactase enzymes. Microorganisms such as bacteria, yeasts, and fungi are used for lactase production, it explores unconventional substrates such as rice straw and orange peel, demonstrating their potential for cost-effective enzyme production. Different fermentation strategies, including submerged and solid-state fermentation, are explained, emphasizing their effectiveness in maximizing lactase yield. Purification and extraction techniques are also important to improve the purity and efficiency of enzymes. Industrial applications of lactase include the hydrolysis of lactose in milk, the manufacture of galactooligosaccharides, and the treatment of lactose malabsorption. Lactase enzymes have a wide range of benefits in the food and pharmaceutical industries, and immobilization technology and genetic engineering can improve the production of enzymes efficiently.
References
Abdel Wahab, W. A., Ahmed, S. A., Kholif, A. M. M., Abd El Ghani, S., & Wehaidy, H. R. (2021). Rice straw and orange peel wastes as cheap and eco-friendly substrates: A new approach in β-galactosidase (lactase) enzyme production by the new isolate L. paracasei MK852178 to produce low-lactose yogurt for lactose-intolerant people. Waste Management, 131, 403–411. https://doi.org/10.1016/j.wasman.2021.06.028
Amin, A. A., Olama, Z. A., & Ali, S. M. (2023). Characterization of an isolated lactase enzyme produced by Bacillus licheniformis ALSZ2 as a potential pharmaceutical supplement for lactose intolerance. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1180463
Arsalan, A., Nature, M. F., Farheen Zofair, S. F., Ahmad, S., & Younus, H. (2020). Immobilization of β-galactosidase on tannic acid stabilized silver nanoparticles: A safer way towards its industrial application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 226. https://doi.org/10.1016/j.saa.2019.117637
Ashok Pandey, S. N. C. R. S. (2017). Current Developments in Biotechnology and Bioengineering Production, Isolation and Purification of Industrial Products. Elsevier.
Dagbagli, S., & Goksungur, Y. (2008). Optimization of β-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology. Electronic Journal of Biotechnology, 11(4). https://doi.org/10.2225/vol11-issue4-fulltext-12
Damin, B. I. S., Kovalski, F. C., Fischer, & J., Piccin, J. S., & Dettmer, & A. (n.d.). Challenges and perspectives of the β-galactosidase enzyme. https://doi.org/10.1007/s00253-021-11423-7/Published
Hebbink, G. A., & Dickhoff, B. H. J. (2019). Application of lactose in the pharmaceutical industry. In Lactose: Evolutionary Role, Health Effects, and Applications (pp. 175–229). Elsevier. https://doi.org/10.1016/B978-0-12-811720-0.00005-2
Hussien, S. A., & Doosh, K. S. (2021). Production And Characterization Of Β-Galactosidase Enzyme In The Plant Extract From (Ziziphus Spina-Christi) And Its Application In Milk. Journal of Life Science and Applied Research, 2(1), 1–9. https://doi.org/10.59807/jlsar.v2i1.20
Jones, G. K., Hoo, Y., & Lee, K. (2017). Produc-tion Technology of Lactase and Its Ap-plication in Food Industry Application. In The Journal of the Science of Food and Agriculture (Vol. 2017, Issue 1). http://www.hillpublisher.com/journals/jsfa
Juma, A. A., Badawy, A. S., & Mohammed, S. B. (2021). Isolation and Purification of β-Galactosidase Enzyme from Local Lactic Acid Bacteria Isolates to Overcome the Phenomenon of Non-Degradation of Milk Lactose. IOP Conference Series: Earth and Environmental Science, 910(1). https://doi.org/10.1088/1755-1315/910/1/012075
Kaur, M., Sood, A., Chauhan, G., & Gupta, R. (n.d.). β-galactosidase: A Potential Biotechnological Enzyme. https://www.researchgate.net/publication/369065971
Kazemi, S., Khayati, G., & Faezi-Ghasemi, M. (2016). β-galactosidase production by Aspergillus niger ATCC 9142 using inexpensive substrates in solid-state fermentation: Optimization by orthogonal arrays design. Iranian Biomedical Journal, 20(5), 287–294. https://doi.org/10.22045/ibj.2016.06
Kuchay, R. A. H. (2020). New insights into the molecular basis of lactase non-persistence/persistence: a brief review. Drug Discoveries & Therapeutics, 14(1), 1–7. https://doi.org/10.5582/ddt.2019.01079
Lambré, C., West Baviera, J. M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., Lampi, E., Bergers, M., Mortensen, A., Rivière, G., Steffensen, I. L., Tlustos, C., Van Loveren, H., Vernis, L., Zorn, H., Roos, Y., Andryszkiewicz, M., Gomes, A., … Chesson, A. (2022). Safety evaluation of the food enzyme β-galactosidase from the non-genetically modified Aspergillus oryzae strain AE-LA. EFSA Journal, 20(10). https://doi.org/10.2903/j.efsa.2022.7569
Leksmono, C. S., Manzoni, C., Tomkins, J. E., Lucchesi, W., Cottrell, G., & Lewis, P. A. (2018). Measuring lactase enzymatic activity in the teaching lab. Journal of Visualized Experiments, 2018(138). https://doi.org/10.3791/54377
Martarello, R. D., Cunha, L., Cardoso, S. L., de Freitas, M. M., Silveira, D., Fonseca-Bazzo, Y. M., Homem-de-Mello, M., Filho, E. X. F., & Magalhães, P. O. (2019). Optimization and partial purification of beta-galactosidase production by Aspergillus niger isolated from Brazilian soils using soybean residue. AMB Express, 9(1). https://doi.org/10.1186/s13568-019-0805-6
Mirsalami, S. M., & Alihosseini, A. (2021). Selection of the most effective kinetic model of lactase hydrolysis by immobilized Aspergillus niger and free β-galactosidase. Journal of Saudi Chemical Society, 25(12). https://doi.org/10.1016/j.jscs.2021.101395
Movahedpour, A., Ahmadi, N., Ghalamfarsa, F., Ghesmati, Z., Khalifeh, M., Maleksabet, A., Shabaninejad, Z., Taheri-Anganeh, M., & Savardashtaki, A. (2022). β-Galactosidase: From its source and applications to its recombinant form. In Biotechnology and Applied Biochemistry (Vol. 69, Issue 2, pp. 612–628). John Wiley and Sons Inc. https://doi.org/10.1002/bab.2137
Mukherjee, A., Goswami, S., & Basu, S. (2024). Characterization and purication of lactase (β-galactosidase) and acid-stable, raw-starch hydrolyzing amylase from jackfruit (Artocarpus heterophyllus) seeds. https://doi.org/10.21203/rs.3.rs-3205929/v1
Porzi, M., Burton-Pimentel, K. J., Walther, B., & Vergères, G. (2021). Development of Personalized Nutrition: Applications in Lactose Intolerance Diagnosis and Management. In Nutrients (Vol. 13, Issue 5). NLM (Medline). https://doi.org/10.3390/nu13051503
Ren, Z. Y., Liu, G. L., Chi, Z., Han, Y. Z., Hu, Z., & Chi, Z. M. (2017). Overexpression of both the lactase gene and its transcriptional activator gene greatly enhances lactase production by Kluyveromyces marxianus. Process Biochemistry, 61, 38–46. https://doi.org/10.1016/j.procbio.2017.06.001
Saqib, S., Akram, A., Halim, S. A., & Tassaduq, R. (2017). Sources of β-galactosidase and its applications in food industry. In 3 Biotech (Vol. 7, Issue 1). Springer Verlag. https://doi.org/10.1007/s13205-017-0645-5
Shen, X., Liao, L., Zhang, G., Zhou, J., Li, J., & Du, G. (2023). Characterization of putative mannoprotein in Kluyveromyces lactis for lactase production. Synthetic and Systems Biotechnology, 8(1), 168–175. https://doi.org/10.1016/j.synbio.2023.01.001
Souza, C. J. F., Comunian, T. A., Kasemodel, M. G. C., & Favaro-Trindade, C. S. (2019). Microencapsulation of lactase by W/O/W emulsion followed by complex coacervation: Effects of enzyme source, addition of potassium and core to shell ratio on encapsulation efficiency, stability and kinetics of release. Food Research International, 121, 754–764. https://doi.org/10.1016/j.foodres.2018.12.053
Souza, C. J. F., Garcia-Rojas, E. E., Souza, C. S. F., Vriesmann, L. C., Vicente, J., de Carvalho, M. G., Petkowicz, C. L. O., & Favaro-Trindade, C. S. (2019). Immobilization of β-galactosidase by complexation: Effect of interaction on the properties of the enzyme. International Journal of Biological Macromolecules, 122, 594–602. https://doi.org/10.1016/j.ijbiomac.2018.11.007
Sun, H., Bankefa, O. E., Ijeoma, I. O., Miao, L., Zhu, T., & Li, Y. (2017). Systematic assessment of Pichia pastoris system for optimized β -galactosidase production. Synthetic and Systems Biotechnology, 2(2), 113–120. https://doi.org/10.1016/j.synbio.2017.04.001
Venkateswarulu, T. C., Abraham Peele, K., Krupanidhi, S., Prakash Narayana Reddy, K., Indira, M., Ranga Rao, A., Bharath Kumar, R., & Vidya Prabhakar, K. (2020). Biochemical and molecular characterization of lactase producing bacterium isolated from dairy effluent. Journal of King Saud University - Science, 32(2), 1581–1585. https://doi.org/10.1016/j.jksus.2019.12.014
Venkateswarulu, T. C., Prabhakar, K. V., Kumar, R. B., & Krupanidhi, S. (2017). Modeling and optimization of fermentation variables for enhanced production of lactase by isolated Bacillus subtilis strain VUVD001 using artificial neural networking and response surface methodology. 3 Biotech, 7(3). https://doi.org/10.1007/s13205-017-0802-x
Venkateswarulu T.C., P. K. V. K. R. B. K. S. (2017). Optimization of Variables for Lactase Production from Isolated Bacillus subtilis strainVUVD001 Through Submerged Fermentation. Indian Journals, 11(4), 370–375.
Yossef, H. el D. (2014). Extraction, Purification and Characterization of Apricot Seed β-Galactosidase for Producing Free Lactose Cheese. Journal of Nutrition & Food Sciences, 04(02). https://doi.org/10.4172/2155-9600.1000270
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Integrative Natural Science
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.